Цацраг

Шулуун дээр орших дурын цэгээс нэг зүгт байрлах шулууны хэсгийг цацраг гэнэ. Эндээс цацрагийг хагас шулуун ч гэж бас нэрлэдэг. Цацраг эхлэл болон чиглэлтэй байдаг. Цацраг эхлэж буй цэгийг цацрагийн эхлэл, эхлэлийн цэг эсхүл цацрагийн орой гэж хэлнэ. Эндээс цацрагт эхлэл байхаас төгсгөл гэж байдаггүй.

Зурагт үзүүлсэн гурван цацраг ерөнхий эхлэлтэй ч өөр чиглэлтэй. Аль ч цацрагийг O цэгээс гарсан цацраг гэж нэрлэж болно.

Нэмэлт цацраг.

Шулуун дээрх дурын цэг тухайн шулууныг хоёр хагас шулуунд  хуваана. Өөрөөр хэлбэл хоёр хэсэг буюу цацрагт гэсэн үг. Эдгээр хэсэг бүрийг нөгөө цацрагийн хувьд нэмэлт цацраг гэж нэрлэдэг.

Эндээс нэг шулуун дээр орших, ерөнхий эхлэлтэй, эсрэг чиглэлтэй цацрагуудыг нэмэлт цацрагууд гэсэн тодорхойлолт гарч ирнэ.  

Цацрагуудын тэмдэглэгээ.

Цацрагийг нэг жижиг латин үсгээр тэмдэглэнэ.

Жишээ нь зурагт үзүүлсэн цацрагтйг m цацраг гэж тэмдэгдэж болохын дээр цацраг дээрх цэгүүдээр бас тэмдэглэж болно. Жишээ нь AB эсхүл AC гэж. Цацраг дээрх хоёр цэгээр түүнийг тэмдэглэхдээ эхний цэг нь цацрагийн эхлэлийг заана. Зураг үзүүлсэн цацрагийг BC гэж тэмдэглэвэл B цэгээс эхлэх цацраг болох тул болохгүй. Эндээс ямар нэгэн бодлого, асуулт, материалд AB цацраг гэсэн байвал түүнийг A цэгээс эхлэлтэй цацраг дээр B цэг оршино гэж ойлгох хэрэгтэй.

Санамж: Аливаа зүйлийн анхдагч ухагдхуунууд энгийн болоод ойлгомжтой байдгаас сурагчид хөнгөн юм гэж үзэн анхаарахгүй орхисноос хоцрогдол үүсэн сүүлдээ тухайн хичээлээс зугтаах үндсэн шалтгаан болдог. Хичээлд тайлбарлаж буй ухагдхууныг сайтар ойлгон тогтоон авахуулахын тулд хичээлүүдийг аль болохоор богинохон байлгахыг хичээх болно. Геометрийн суурь ухагдхуунуудыг мэдэхгүйгээр цааш явахгүй гэдгийг сануулъя. Та цагаан толгойн үсгүүдийг бүгдийг тогтоогоогүй бол уншиж чадахгүйн адил ямарч хичээлийн үндсэн ойлголтыг мэдэхгүйгээр түүнийг сурна гэж байхгүй.

Мэдээлэл таалагдсан бол найзуудтайгаа хуваалцаарай.

  Нээгдсэн тоо: 2625 Нийтийн

Өгөгдсөн хоёр тооноос нэг шинэ тоог олох үйлдлийг арифметикийн үйлдэл гэнэ. Олсон тоог тухайн үйлдлийн үр дүн гэнэ.
Жишээ нь 5 тоог аваад түүн дээр нэгийг нэмвэл 6 гэсэн шинэ тоо гарна. Ингэснээр бид 5 ба 1 гэсэн тоонуудаас 6 гэсэн шинэ тоог оллоо. Өөрөөр хэлбэл өгөгдсөн тоонуудад арифметикийн үйлдлийг хийлээ гэсэн үг.

  Нээгдсэн тоо: 9690 Төлбөртэй

Магадлалын онолд үзэгдэл гэдгийг санамсаргүй төгсгөлтэй туршилтаар тохиолдох эсвэл эс тохиолдох дурын үр дүнг ойлгоно. Ийм туршилтын хамгийн энгийн үр дүнг / жишээлбэл зоосон мөнгийг хаяхад тоогоор эсвэл сүлдээрээ унах, хөзөр дундаас нэгийг сугалахад тамга гарч ирэх, шоог хаяхад тодорхой тоо гарч ирэх г.м / эгэл үзэгдэл гэнэ.
Эгэл үзэгдлүүдийн олонлог E -г эгэл үзэгдлийн орон зай гэдэг. Шоо шидэхэд энэ орон зай нь зургаа харин хөзөрөөс карт сугалахад 52 эгэл үзэгдлээс бүрдэнэ. Үзэгдэл нь нэг эсвэл хэд хэдэн эгэл үзэгдлээс бүрдэж болно. Жишээ нь : Хөзрөөс карт сугалахад дараалан хоёр тамга гарч ирэх, шоог гурван удаа хаяхад нэг ижил буух тоо г.м  Тэгвэл үзэгдэл гэдгийг эгэл үзэгдлийн орон зайны дурын дэд олонлог гэж тодорхойлж болно.

  Нээгдсэн тоо: 1990 Төлбөртэй

Модултай тэгшитгэлийг бодох I хичээлд модул гэж юу болох, үндсэн томьёоны талаар авч үзсэн. Жишээ болгон энгийн тэгшитгэүүдийг бодсноор модултай тэгшитгэлийг бодох алгоритм байж болох үндэслэлийг гарган ирсэн. Тэгвэл энэ хичээлээр модултай тэгшитгэлүүдийн төрлүүд тэдгээрийг хэрхэн бодох аргачлалд суралцая. Модул ухагдхууныг хүнд гэсэн ойлголтоос болоод сурагчид түүнийг судлан суралцахдаа хойрго хандах явдал бий. Хичээлийн материалыг ойлгохгүй бол дахин үзээд ойлгон авахыг хичээгээрэй. Таныг хичээлийг хэдэн удаа үзсэнг хэн ч мэдэхгүй ямарч зэмлэл, хариуцлага хүлээлгэхгүй, цаг хугацаанд ч шахагдахгүй байдал нь интернет сургалтын давуу тал шүү.

  Нээгдсэн тоо: 10351 Нийтийн

Орой бүрд нь ижил тоотой талууд нийлдэг, бүх тал нь хоорондоо тэнцүү зөв олон өнцөгтөөс бүрдсэн олон талтыг зөв олон талт гэнэ.
Зөвхөн таван гүдгэр, дөрвөн гүдгэр биш зөв олон талт мэдэгдэж байгаа. Гүдгэр зөв олон талтууд:

  • тетраэдер / 4 талт  Зур. 99/
  • куб буюу гексаэдер / 6 талт Зур. 100/
  • октаэдер / 8 талт  Зур. 101/
  • додекаэдер / 12 талт  Зур. 102/
  • икосаэдер / 20 талт  Зур. 103/

Үйл явдал /event/ тодорхой үйлдэл хийгдсэн талаар системд мэдэгддэг. Хэрвээ бид энэхүү үйлдлийг ажиглах хэрэгтэй бол яг энд…

Нээгдсэн тоо : 231

 

Манай төсөл олон хуудсуудтай болон тэдгээрийн хооронд динамикаар шилжилт хийж байгаа ч тухайн үед шилжилт хийгдсэн хуудаст тохирох…

Нээгдсэн тоо : 318

 

Зочин (Visitor) паттерн классуудыг өөрчлөхгүйгээр тэдгээрийн обьектуудын үйлдлийг тодорхойлох боломжийг олгоно. Зочин хэвийг ашиглахдаа классуудын хоёр ангилалыг тодорхойлно.…

Нээгдсэн тоо : 279

 

Лямбда-илэрхийлэл нь нэргүй аргын хураангуй бичилтийг илэрхийлнэ. Лямбда-илэрхийлэл утга буцаадаг, буцаасан утгыг өөр аргын…

Нээгдсэн тоо : 377

 

Кодийн сайжруулалт /рефакторинг/ хичээлээр програмийн кодоо react -ийн зарчимд нийцүүлэн компонентод салгасан.…

Нээгдсэн тоо : 423

 

Хадгалагч (Memento) хэв обьектын дотоод төлвийг түүний гадна гаргаж дараа нь хайрцаглалтын зарчмыг зөрчихгүйгээр обьектыг сэргээх боломжийг олгодог.

Нээгдсэн тоо : 447

 

Делегаттай нэргүй арга нягт холбоотой. Нэргүй аргуудыг делегатийн хувийг үүсгэхэд ашигладаг.
Нэргүй аргуудын тодорхойлолт delegate түлхүүр үгээр…

Нээгдсэн тоо : 517

 

Математикт харилцан урвуу тоонууд гэж бий. Ямар нэгэн тооны урвуу тоог олохдоо тухайн тоог сөрөг нэг зэрэг дэвшүүлээд…

Нээгдсэн тоо : 596

 

Төсөлд react-router-dom санг оруулан чиглүүлэгчдийг бүртгүүлэн тохируулсан Санг суулган тохируулах хичээлээр бид хуудас…

Нээгдсэн тоо : 621

 
Энэ долоо хоногт

Тэмцээнд 16 шатарчин оролцсон. Нэгийн давааны хуваарийн хичнээн хувилбар байж болох вэ? / Хуьаарьт дор хаяж нэг өрөгт тоглох хүмүүс нь ялгаатай бол хувилбар гэж тооцно. Тоглох өнгө, ширээний дугаарыг тооцохгүй/

Нээгдсэн тоо : 1297

 

Нээгдсэн тоо : 1067

 

prob02_187_01 илэрхийллийг хялбарчил.

Нээгдсэн тоо : 179